16,543 research outputs found

    Development of improved amorphous materials for laser systems

    Get PDF
    Crystallization calculations were performed in order to determine the possibility of forming a particular type of laser glass with the avoidance of devitrification in an outer space laboratory. It was demonstrated that under the homogenuous nucleating conditions obtainable in a zero gravity laboratory this laser glass may be easily quenched to a virtually crystal-free product. Experimental evidence is provided that use of this material as a host in a neodymium glass laser would result in more than a 10 percent increase in efficiency when compared to laser glass rods of a similar composition currently commercially available. Differential thermal analysis, thermal gradient oven, X-ray diffraction, and liquidus determination experiments were carried out to determine the basics of the crystallization behavior of the glass, and small-angle X-ray scattering and splat-cooling experiments were performed in order to provide additional evidence for the feasibility of producing this laser glass material, crystal free, in an outer space environment

    The UV behavior of Gravity at Large N

    Full text link
    A first step in the analysis of the renormalizability of gravity at Large N is carried on. Suitable resummations of planar diagrams give rise to a theory in which there is only a finite number of primitive superficially divergent Feynman diagrams. The mechanism is similar to the the one which makes renormalizable the 3D Gross-Neveu model at large N. Some potential problems in fulfilling the Slavnov-Taylor and the Zinn-Justin equations are also pointed out.Comment: 17 pages, 9 figures. To appear on Phys. Rev. D. Two more references, further technical details and the discussion of the KLT relations at large N have been include

    Comment on "Scalar-tensor gravity coupled to a global monopole and flat rotation curves" by Lee and Lee

    Full text link
    The recent paper by Lee and Lee (2004) may strongly leave the impression that astronomers have established that the rotation curves of spiral galaxies are flat. We show that the old paradigm of Flat Rotation Curves lacks, today, any observational support and following it at face value leads to intrinsically flawed alternatives to the Standard Dark Matter Scenario. On the other side, we claim that the rich systematics of spiral galaxy rotation curves, that reveals, in the standard Newtonian Gravity framework, the phenomenon of dark matter, in alternative scenarios, works as a unique benchmark.Comment: 3 pages, 2 figures, accepted in Phys. Rev.

    Principles of Antifragile Software

    Full text link
    The goal of this paper is to study and define the concept of "antifragile software". For this, I start from Taleb's statement that antifragile systems love errors, and discuss whether traditional software dependability fits into this class. The answer is somewhat negative, although adaptive fault tolerance is antifragile: the system learns something when an error happens, and always imrpoves. Automatic runtime bug fixing is changing the code in response to errors, fault injection in production means injecting errors in business critical software. I claim that both correspond to antifragility. Finally, I hypothesize that antifragile development processes are better at producing antifragile software systems.Comment: see https://refuses.github.io

    The topological structure of SU(2) gluodynamics at T > 0 : an analysis using the Symanzik action and Neuberger overlap fermions

    Full text link
    We study SU(2) gluodynamics at finite temperature on both sides of the deconfining phase transition. We create the lattice ensembles using the tree-level tadpole-improved Symanzik action. The Neuberger overlap Dirac operator is used to determine the following three aspects of vacuum structure: (i) The topological susceptibility is evaluated at various temperatures across the phase transition, (ii) the overlap fermion spectral density is determined and found to depend on the Polyakov loop above the phase transition and (iii) the corresponding localization properties of low-lying eigenmodes are investigated. Finally, we compare with zero temperature results.Comment: 20 pages, 21 figures, one new figure, two overloaded figures split in two, minor clarifying changes throughout the text, final version accepted by Physical Review

    Higgs-Flavor Groups, Naturalness, and Dark Matter

    Full text link
    In the absence of low-energy supersymmetry, a multiplicity of weak-scale Higgs doublets would require additional fine-tunings unless they formed an irreducible multiplet of a non-abelian symmetry. Remnants of such symmetry typically render some Higgs fields stable, giving several dark matter particles of various masses. The non-abelian symmetry also typically gives simple, testable mass relations.Comment: Some comments added after Eqs. (2) and (12

    CFL Phase of High Density QCD at Non Zero Strange Quark Mass

    Full text link
    We compute free energy of quark matter at asymptotically high baryon number density in the presence of non zero strange quark mass including dynamics of pseudo Nambu-Goldstone bosons due to chiral symmetry breaking, extending previously existing analysis based on perturbative expansion in ms2/4ΌΔ.m_s^2/4\mu\Delta. We demonstrate that the CFLK0K^0 state has lower free energy than the symmetric CFL state for 0<ms2/4ΌΔ<2/30<m_s^2/4\mu\Delta<2/3. We also calculate the spectrum of the fermionic quasiparticle excitations about the kaon condensed ground state in the regime ms2/4ΌΔ∌1m_s^2/4\mu\Delta \sim 1 and find that (ms2/4ΌΔ)crit=2/3(m_s^2/4\mu\Delta)_{crit}=2/3 for the CFL-gCFL phase transition, the leading order result reported in [1], is not modified.Comment: 16 pages, 3 figure

    Spontaneous breaking of conformal invariance, solitons and gravitational waves in theories of conformally invariant gravitation

    Full text link
    We study conformal gravity as an alternative theory of gravitation. For conformal gravity to be phenomenologically viable requires that the conformal symmetry is not manifest at the energy scales of the other known physical forces. Hence we require a mechanism for the spontaneous breaking of conformal invariance. In this paper we study the possibility that conformal invariance is spontaneously broken due to interactions with conformally coupled matter fields. The vacuum of the theory admits conformally non-invariant solutions corresponding to maximally symmetric space-times and variants thereof. These are either de Sitter space-time or anti-de Sitter space-time in the full four space-time dimensions or in a lower dimensional sub-space. We consider in particular normalizable, linearized gravitational perturbations around the anti-de Sitter background. Exploiting the conformal flatness of this space-time, we show to second order, that these gravitational fluctuations, that are taken to be fourier decomposable, carry zero energy-momentum. This squares well with the theorem that asymptotically flat space-times conformal gravity contain zero energy and momentum \cite{bhs}. We also show the possibility of domain wall solitons interpolating between the ground states of spontaneously broken conformal symmetry that we have found. These solitons necessarily require the vanishing of the scalar field, repudiating the recent suggestion \cite{f} that the conformal symmetry could be quarantined to a sterile sector of the theory by choosing an appropriate field redefinition.Comment: 21 pages, 2 figures, colour viewing helpful, version to be published in PR

    Baryon Axial Charge in a Finite Volume

    Full text link
    We compute finite-volume corrections to nucleon matrix elements of the axial-vector current. We show that knowledge of this finite-volume dependence --as well as that of the nucleon mass-- obtained using lattice QCD will allow a clean determination of the chiral-limit values of the nucleon and Delta-resonance axial-vector couplings.Comment: 11 pages, 8 figure

    A Magellanic Origin for the Warp of the Galaxy

    Get PDF
    We show that a Magellanic Cloud origin for the warp of the Milky Way can explain most quantitative features of the outer HI layer recently identified by Levine, Blitz & Heiles (2005). We construct a model similar to that of Weinberg (1998) that produces distortions in the dark matter halo, and we calculate the combined effect of these dark-halo distortions and the direct tidal forcing by the Magellanic Clouds on the disk warp in the linear regime. The interaction of the dark matter halo with the disk and resonances between the orbit of the Clouds and the disk account for the large amplitudes observed for the vertical m=0,1,2 harmonics. The observations lead to six constraints on warp forcing mechanisms and our model reasonably approximates all six. The disk is shown to be very dynamic, constantly changing its shape as the Clouds proceed along their orbit. We discuss the challenges to MOND placed by the observations.Comment: 4 pages, 3 figures, submitted to ApJ Letters. Additional graphics, 3d visualizations and movies available at http://www.astro.umass.edu/~weinberg/lm
    • 

    corecore